Galois Group Computation for Rational Polynomials
نویسندگان
چکیده
We describe methods for the computation of Galois groups of univariate polynomials over the rationals which we have implemented up to degree 15. These methods are based on Stauduhar's algorithm. All computations are done in unramiied p-adic extensions. For imprimitive groups we give an improvement using subbelds. In the primitive case we use known subgroups of the Galois group together with a combination of Stauduhar's method and the absolute resolvent method.
منابع مشابه
LAGUERRE POLYNOMIALS WITH GALOIS GROUP Am FOR EACH
In 1892, D. Hilbert began what is now called Inverse Galois Theory by showing that for each positive integer m, there exists a polynomial of degree m with rational coefficients and associated Galois group Sm, the symmetric group on m letters, and there exists a polynomial of degree m with rational coefficients and associated Galois group Am, the alternating group on m letters. In the late 1920’...
متن کاملResultants, Resolvents and the Computation of Galois Groups
We will develop the machinery of resultants and resolvent polynomials with the ultimate goal of understanding the so-called “resolvent method” for computing Galois groups over Q. Along the way, we will encounter tangential applications of these tools, such as the determination of the minimal polynomial of, say, the sum of two algebraic numbers using resultants. In this way, this paper can serve...
متن کاملGalois Theory and Reducible Polynomials
This paper presents works on reducible polynomials in Galois theory. It gives a fundamental theorem about the Galois ideals associated with a product of groups. These results are used for the practical determination of Galois groups of polynomials of degrees up to 7. : : :). The following tools are used: resolvents (relative or absolute), p-adic methods, Grr obner bases or block systems. In gen...
متن کاملMulti-parameter Polynomials with Given Galois Group
The non-Abelian finite simple groups and their automorphism groups play a crucial role in an inductive approach to the inverse problem of Galois theory. The rigidity method (see, for example, Malle and Matzat, 1999) has proved very efficient for deducing the existence of Galois extensions with such groups, as well as for the construction of polynomials generating such extensions. Nevertheless, ...
متن کاملThe Determination of Galois Groups
A technique is described for the nontentative computer determination of the Galois groups of irreducible polynomials with integer coefficients. The technique for a given polynomial involves finding high-precision approximations to the roots of the polynomial, and fixing an ordering for these roots. The roots are then used to create resolvent polynomials of relatively small degree, the linear fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 30 شماره
صفحات -
تاریخ انتشار 2000